tion of the k class of data points using the partitioning rule (x
ini index is defined as below,
ܫீሺݔൌ߬ሻൌሺ߬ሻሾ1 െሺ߬ሻሿ
ୀଵ
(3.75)
be seen that, if a subspace is pure for one class, ሺ߬ሻ = 1 and
ሻൌ0. Or, ሺ߬ሻ = 0 and 1 െሺ߬ሻൌ1. Therefore, ሺ߬ሻሾ1 െ
0. If all subspaces are pure for one class, ܫீሺݔൌ߬ሻൌ0. If a
ng rule generates a random classification model, ሺ߬ሻ = 0.5.
e of ܫீሺݔൌ߬ሻ is 0.25 ൈܭ. Therefore, the minimum value of the
ex is zero when a set of partitioning rules constitute a perfect
tion model and the maximum value of the Gini index is 0.25K.
ther measurement is called the information gain based on the
heory, which is defined as below, where logଶሺ߬ሻ has been
by logଶሺ1 ሺ߬ሻሻ for avoiding an infinite value in case ሺ߬ሻ
ching zero,
ܫாሺݔൌ߬ሻൌሺ߬ሻlogଶሺ1 ሺ߬ሻሻ
ୀଵ
(3.76)
nformation gain should be maximised for getting a better
ng rule. If a partitioning rule generates a pure subspace, ሺ߬ሻൌ
ore, ሺ߬ሻlogଶሺ1 ሺ߬ሻሻൌ1. The maximum information gain
(a) (b)
The impurity measurement for partitioning rules applied to the data shown in
(a). (a) The Gini index. (b) The entropy index (information gain).